
How to use the NXT_driver r2d2mipal and the
corresponding NXT_controller

Vladimir Estivill-Castro
MiPal

September 25, 2015

Abstract

This document gets you started on using the NXT_driver r2d2mipaland the corre-
sponding NXT_controller. It can be used as a tutorial to gain an understanding of very
basic C++11 programming to control an LEGO-NXT brick. Nevertheless, we also create a
hardware abstraction of a differential robot constructed in a standard way for the PUSH ap-
proch from ROS.

We recommend you also become familiar with the complementing Model-Driven Devel-
opment paradigm of logic-labeled finite-state machines (llfsms).

Contents
1 The set-up 1

2 An example of a behavior by a simple llfsm using the LEGO-NXT robot and ROS 2

1 The set-up
This document complements the use of clfsm with ROS. In provides and example outside a simu-
lator, using the LEGO-NXT robot. To properly install in Ubuntu 14.04 the the NXT_driverr2d2mipal
module you need the blue-thooth library and the usb-library:

sudo apt-get install libbluetooth-dev
sudo apt-get install libusb-1.0-0-dev

Download the NXT_driver r2d2mipal module, it is a catkin package.
git clone https://github.com/mipalgu/NXTdriver.git

Place it in your catkinworksapce and compile it with catkin_make. If you have a LEGO-NXT
robot and you connected to the USB to your Ubuntu, then you can run the demo program.

sudo devel/lib/r2d2mipal/testDemo

Every time you press the sensor, motor A spins, and you see the revolutions in the standard output.
Note, in Ubuntu, the NXT grabs the device as root by defualt. You can change the usb device with

sudo chmod ugo+rwx /dev/bus/usb/02/*

1

http://mipal.net.au
http://www.lego.com/en-us/mindstorms/
http://wiki.ros.org/
http://www.lego.com/en-us/mindstorms/
http://wiki.ros.org/
http://wiki.ros.org/
http://www.lego.com/en-us/mindstorms/
http://www.lego.com/en-us/mindstorms/

Figure 1: Machine that represents a very simple behavior. It is compiled and executed by MiPal’s
clfsm and uses ROS-msg an ROS-srv.

2 An example of a behavior by a simple llfsm using the LEGO-NXT
robot and ROS

This is an illustration of building a logic-labeled finite-state machine and demonstrate running the
interpreter clfsm ot a robot (the LEGO-NXT) with only ROS interfaces (ROS-msg and ROS-srv,
that is ROS-messages and ROS-services). It requires familiarity with the beginning tutorials of ROS
and the use of MIEDITLLFSM to build a llfsm. The other aspect is you need clfsm installed to
run the machine.

Figure 1. presents a diagram of the machine we will build.
It should not be hard to follow this behavior. The behavior starts in the state INITIAL where the

ROS handlers for sending commands to the robot or receiving sensor information are initialized.
After one second (transition with label after(1), we move to the state BUTTON_ON). In the
state BUTTON_ON, a command is sent to turn the touch sensors on (both the left and right). There
is a transition after_ms(100) && client.call(srv) to the state TEST (this transition
means that it must be the case that 100 mili-seconds have occurred and we have received sensor in-
formation on the service). The state TEST simply updates the Boolean variable buttonPushed
to whether either button or both are pushed. The OnEntry section of the TEST state is as follows.

buttonPushed=

static_cast<bool>(srv.response.left_pressed) ||static_cast<bool>(srv.response.right_pressed)

;

If no button has been pushed (no obstacle), we move to the state state MOTOR_ON. In the
state MOTOR_ON, the motors are set forward. After a little while we read the sensors again
and return to the state TEST. If a button has been pushed, then we actually move to the state
MOTORS_BACK that sets the motors back and after 500 mili-seconds (half a second), we go to
the state SPIN. In SPIN one motor goes forward and the other backward, so the robot spins until

2

http://mipal.net.au
http://wiki.ros.org/
http://wiki.ros.org/
http://www.lego.com/en-us/mindstorms/
http://wiki.ros.org/
http://www.lego.com/en-us/mindstorms/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/

we move back to TEST which is after half a second and another reading of the sensors. The END
state is empty and is a terminal state we arrive if the ROS-systems is going down.

Running this demonstration machine

To run this demonstration machine you need to download the MiPal clfsm.tar.bz2 and install
and compile it correctly. You need a LEGO-NXT robot configured as a differential two wheels
robot, with bumper for the 2 touch sensors at the front. Motors should be on B and C. Input port
for the button/touch sensors should be 1 and 2.

Make sure you can run the testDemo program of the NXT_driver. This program is built
in the /devel/lib/r2d2mipal directory after issuing the corresponding catkin_make.

Recall that in Ubuntu, connecting the LEGO-NXT may require that you update the permission
to the USB port. Look what is the new port and usually something like

sudo chmod ugo+rwx /dev/bus/usb/001/038

will enable the testDemo to run and connect via USB to the LEGO-NXT. The program starts
motor A when button in 2 is pushed and shows readings of the rotors.

Download the catkin package NXT_controller ros_webots_epuck_nxt_differential_robot
(this is the package that has the nxt_controller). To download the NXT_controller
r2d2mipal module, it is a catkin package.

git clone https://github.com/mipalgu/NXTcontroller.git

Put this package in your working space and issue a catkin_make. You should see that now also
the programs in this package are built. You should find the file
devel/lib/ros_webots_epuck_nxt_differential_robot/nxt_controller/nxt_controller
has been produced.

Also, download the machine motorTest.machine.tar. Unpack the machine with tar
-xvf and place the folder motorTest.machine in the folder machines.

cd $DOWNLOADS
tar -xvf motorTest.machine.tar
cd $HOME/catkin_ws/src
catkin_create_pkg motorTest std_msgs roscpp clfsm libclfsm
cd motorTest
mkdir -p machines
mv $DOWNLOADS/motorTest.machine machines

We recommend the building of a catkin package for this machine using the method described
with the demonstraton llfsms for ROS and clfsm. That is using the script machine_step.sh

Alternatively, you can use the bmake method also described with the demonstraton llfsms
for ROS and clfsm. With the bmake method , place the given Makefile (also in the same
download section from MiPal’s downloads inside the recent machines directory. Check the
Makefile lsit the motorTest as a machine to compile. Then, issue bmake. The machine is
compiled.

Make sure your robot has room to run and move. With a LEGO-NXT connected vis USB to
your computer, start roscore in one terminal, start the controller in another terminal

./devel/lib/ros_webots_epuck_nxt_differential_robot/nxt_controller/nxt_controller

In a third terminal start the finite state machine with clfsm.
cd $HOME/catkin_ws/machines
../devel/lib/clfsm/clfsm -v motorTest.machine

The robot will act!

3

http://wiki.ros.org/
http://mipal.net.au
http://www.lego.com/en-us/mindstorms/
http://www.lego.com/en-us/mindstorms/
http://www.lego.com/en-us/mindstorms/
http://wiki.ros.org/
http://wiki.ros.org/
http://mipal.net.au
http://www.lego.com/en-us/mindstorms/

Building the machine yourself, and understanding the details

Using the INCLUDE button in MIEDITLLFSM you open the window to define the global include
paths for this machine.

#include "ros/ros.h"
#include "ros_webots_epuck_nxt_differential_robot/Rrobot.h"
#include "ros_webots_epuck_nxt_differential_robot/RbuttonStatus.h"
#include "CLMacros.h"

The ROS infrastructure will be necessary, thus ros/ros.h. Our messages to send command
control to the robot will be defined in Rrobot.h, while the services will be in RbuttonStatus.h.

The variables (use the VARIABLES button to add them are:
ros::NodeHandle* n
ros_webots_epuck_nxt_differential_robot::RbuttonStatus srv
ros::Publisher robot_pub
bool buttonPushed
ros::ServiceClient client

And the OnEntry section of the INITIAL state is as follows.
int argc = 0;

static char *argv[1];

std::string node_name="motortest";

char * cstr = new char [node_name.length()+1];

std::strcpy (cstr, node_name.c_str());

argv[0]= cstr;

ros::init(argc, argv, "motortest");

n=new ros::NodeHandle();

robot_pub =

n->advertise<ros_webots_epuck_nxt_differential_robot::Rrobot>("robot", 1000);

client =

n->serviceClient<ros_webots_epuck_nxt_differential_robot::RbuttonStatus>("buttonstatus");

So, perhaps it is a good idea to have a look at the catkin package for the NXT_controller
ros_webots_epuck_nxt_differential_robot
(this is the package that has the nxt_controller).

You can inspect the soruce code of the package yourself. We recommend this as it will review
some aspects of ROS.

cd $HOME/catkin_ws/src
catkin_create_pkg ros_webots_epuck_nxt_differential_robot std_msgs
roscpp

You can construct the types for the ROS-msg.
cd $HOME/catkin_ws/src/ros_webots_epuck_nxt_differential_robot
mkdir msg
cd msg

You can create the file Rmotor.msg. With your favorite text editor. The content is
Header Rmotor
int32 power

That is, a motor command is defined by an signed integer giving it power (positive is forwards,
negative is backwards and 0 is stop; and we will make it in relative terms: a percentage of maximum
power).

A second message file is Rbutton.msg and its content is

4

http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/

Header Rbutton
bool on

This Boolean value indicates whether the button is active or not. With this two message files, we
can actually build the message structure for commands to the robot with the behavior above. Create
the file Rrobot.msg with the content

Header Rrobot
ros_webots_epuck_nxt_differential_robot/Rmotor leftMotor
ros_webots_epuck_nxt_differential_robot/Rmotor rightMotor
ros_webots_epuck_nxt_differential_robot/Rbutton leftButtonSwitch
ros_webots_epuck_nxt_differential_robot/Rbutton rightButtonSwitch

That is, our commands to a robot instruct it on what power its left and right motor shall have
and if the touch/button sensors are active or not.

Now, it should be no mystery why the OnEntry section of the state Button_On looks as
follows.

ros_webots_epuck_nxt_differential_robot::Rrobot msg;
msg.leftMotor.power=0;
msg.rightMotor.power=0;
msg.leftButtonSwitch.on=true;
msg.rightButtonSwitch.on=true;
robot_pub.publish(msg);

In msg, we get an object of the class ros_webots_epuck_nxt_differential_robot::Rrobot,
we complete its fields. Both motors are halted and both sensors are activated. Then, we publish
this message through the ROS handler.

Look at how similar are the states MOTOR_ON, MOTORS_BACKWARDS, and SPIN.
When you create the message types that you need, the ROS environment must be instructed to

create the marshaling and types for connection. The first place this has to be specified is in the file
package.xml of the package. You needs lines like

<build_depend>message_generation</build_depend>
<run_depend>message_runtime</run_depend>

to indicate we are going to use ROS-msg and ROS-srv.
The second part where this is specified in the CMakeLists.txt of the package. There, we

need to set up sections like.
find_package(catkin REQUIRED COMPONENTS
roscpp
std_msgs
message_generation
r2d2mipal
)

This is also to show that we will use MiPal’s NXT_driver r2d2mipal as the connection to the
robot. We need also as follows.

catkin_package(
INCLUDE_DIRS include
LIBRARIES ros_webots_epuck_nxt_differential_robot
CATKIN_DEPENDS roscpp std_msgs message_runtime
r2d2mipal # DEPENDS system_lib
DEPENDS ${LIBUSB_LIBRARY}
)

5

http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/
http://mipal.net.au

Then we need to specify our message files.
add_message_files(
FILES
Message1.msg
Message2.msg
Rmotor.msg
Rbutton.msg
Rrobot.msg
)

And also our services files.
add_service_files(
FILES
Service1.srv
Service2.srv
RbuttonStatus.srv
)

We need to generate the headers.
generate_messages(
DEPENDENCIES
std_msgs
)

Place also the corresponding flags in the build section
set(CMAKE_CXX_FLAGS "-std=c++11")

And where to find the includes of r2d2mipal
include_directories(
${catkin_INCLUDE_DIRS}
)
include_directories(${r2d2mipal_INCLUDE_DIRS})

Now we can have the directive on how to build the main node, that is the nxt_controller.
add_executable(nxt_controller src/nxt_controller.cpp src/nxt_interface.cpp)

Which has some dependencies.
add_dependencies(nxt_controller ros_webots_epuck_nxt_differential_robot_generate_messages_cpp

r2d2mipal)

And its linking is performed as follows.
target_link_libraries(nxt_controller
r2d2mipal
${LIBUSB_LIBRARY}
${LIBBLUETOOTH_LINKER_FLAGS} ${LIBBLUETOOTH_LIBRARY}
$catkin_LIBRARIES
)

6

The ROS-srv

To find out the status of sensors we will use ROS-srv.
cd $HOME/catkin_ws/src/ros_webots_epuck_nxt_differential_robot
mkdir srv
cd srv

In this case, the file that describes the the ROS-service (request and response pair) is simple. The
file is named RbuttonStatus.srv and its contents is as follow.

--
bool left_pressed
bool right_pressed

That is, the request part is empty, while the response part has two Boolean fields indicating whether
the corresponding sensors is pressed or not.

The structure of the nxt_controller
The node nxt_controller is defined by a simple starting program nxt_controller.cpp
/**

* \file nxt_driver.cpp

* nxt_driver.cpp

* Created by

* \author Vlad Estivill-Castro

* \date 13/10/2014.

*/

#include "ros_webots_epuck_nxt_differential_robot/nxt_interface.h"

int main(int argc, char **argv)

{

NXT_interface *subscriber = new NXT_interface();

subscriber->run(argc, argv);

return 0;

}

This program is in the source (i.e. src) directory of the package. It is simple because all the
work is done by the class in nxt_interface. In this main program, we only create an object of
the class NXT_interface and then invoke the run method on it.

So, lets look at the header file of the nxt_interface: nxt_interface.h
/**

* \file nxt_interface.h

* nxt_interface.h

* Created by

* \author Vlad Estivill-Castro

* \date 14/10/2014.

7

http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/

*/

#include "r2d2_base.h"

#pragma clang diagnostic ignored "-Wold-style-cast"

#include "usb.h"

#include "ros/ros.h"

#include "ros_webots_epuck_nxt_differential_robot/Rmotor.h"

#include "ros_webots_epuck_nxt_differential_robot/Rbutton.h"

#include "ros_webots_epuck_nxt_differential_robot/Rrobot.h"

#include "ros_webots_epuck_nxt_differential_robot/RbuttonStatus.h"

class NXT_interface

{

public:

///< constructor

NXT_interface();

std::string banner() { return std::string("(c) Vlad Estivill_Castro, demo subscriber R@D@-NXT

ROS driver");}

void run(int argc, char **argv);

/// call-back method robot

void robotCallback(const ros_webots_epuck_nxt_differential_robot::Rrobot::ConstPtr& msg);

/// call-back method button status/value

bool value_buttonCallback(

ros_webots_epuck_nxt_differential_robot::RbuttonStatus::Request & req,

ros_webots_epuck_nxt_differential_robot::RbuttonStatus::Response& res);

private:

r2d2::Brick* brick;

r2d2::NXT* nxt;

r2d2::Sensor* sensor_left; r2d2::Sensor* sensor_right;

bool status_sensor_left; bool status_sensor_right;

r2d2::Motor* motor_right; r2d2::Motor* motor_left;

};

The program needs to know about the NXT_driverr2d2mipal and about the usb library for
connecting to the LEGO-NXT. Its has a constructor, a banner for feedback, and a call-back for the
control messages and a callback for the status services. Naturally, a run() method to spin/sleep,
as the work will be performed by the call-backs. The private variables are to hold the data-
structures to actually work as an interface. They will be initialized in the constructor. They will

8

http://www.lego.com/en-us/mindstorms/

hold the usb-connection and boolean to record if our sensors are on or off, and the actual objects
for sensors and motors to issue r2d2mipal commands to them. The file nxt_interface.h
is in the include directory of our package and has a path as the name of our package.

So, now we are in a position to look at the definition of the interface. This is the file nxt_interface.cpp
in the source directory of our package. nxt_interface.cpp
/**

* \file nxt_interface.cpp

* nxt_interface.cpp

* Created by

* \author Vlad Estivill-Castro

* \date 14/10/2014.

*/

#include "ros_webots_epuck_nxt_differential_robot/nxt_interface.h"

///< constructor

NXT_interface::NXT_interface()

{ banner();

r2d2::USBBrickManager usbm;

brick = usbm.list()->at(0);

nxt = brick->configure(r2d2::SensorType::TOUCH_SENSOR,

r2d2::SensorType::TOUCH_SENSOR,

r2d2::SensorType::NULL_SENSOR,

r2d2::SensorType::NULL_SENSOR,

r2d2::MotorType::STANDARD_MOTOR,

r2d2::MotorType::STANDARD_MOTOR,

r2d2::MotorType::STANDARD_MOTOR);

if (nxt != nullptr) {

/* check the connections of the NXT you are using */

sensor_right = nxt->sensorPort(r2d2::SensorPort::IN_1);

sensor_left = nxt->sensorPort(r2d2::SensorPort::IN_2);

motor_right = nxt->motorPort(r2d2::MotorPort::OUT_B);

motor_left = nxt->motorPort(r2d2::MotorPort::OUT_C);

// initially sensors are off

status_sensor_left = false;

status_sensor_right = false;

ROS_INFO("Connection established");

}

else

ROS_INFO("ERROR: Conenction failed");

}

9

void NXT_interface :: run(int argc, char **argv)

{

if (nxt != nullptr) {

ros::init(argc, argv, "nxt_driver");

ros::NodeHandle n;

ros::Subscriber subRobot = n.subscribe("robot", 1000, & NXT_interface::robotCallback,this);

ros::ServiceServer serviceStatusButton = n.advertiseService("buttonstatus", & NXT_interface::value_buttonCallback,this);

ROS_INFO("Service ready");

ros::spin();

std::cerr<< "This EXITING sometimes does not happen when roscore goes down" << std::endl;

}

}

/// call-back method button status/value

bool NXT_interface :: value_buttonCallback(

ros_webots_epuck_nxt_differential_robot::RbuttonStatus::Request & req,

ros_webots_epuck_nxt_differential_robot::RbuttonStatus::Response& res)

{

if (status_sensor_right)

{ res.right_pressed=sensor_right->getValue();

}

if (status_sensor_left)

{ res.left_pressed=(true==sensor_left->getValue());

}

if (! (status_sensor_left || status_sensor_right))

{

ROS_INFO("service invoked with both SENSOR OFF:");

ROS_INFO("FALSE exit:");

return false;

}

else

{

return true;

}

}

// call-back method robot_control

void NXT_interface :: robotCallback(const ros_webots_epuck_nxt_differential_robot::Rrobot::ConstPtr&

msg) {

int leftPower=msg->leftMotor.power;

int rightPower=msg->rightMotor.power;

10

ROS_INFO("Setting Motors Left: [%d] Right: [%d]", leftPower,rightPower);

if ((leftPower) && (100>= leftPower))

motor_left->setForward(leftPower);

else { // negative values should be back

leftPower= - leftPower;

if ((leftPower) && (100>= leftPower))

motor_left->setReverse(leftPower);

else // stop with power ==0

motor_left->stop(false);

}

if ((rightPower) && (100>= rightPower))

motor_right->setForward(rightPower);

else

{ rightPower= -rightPower;

if ((rightPower) && (100>= rightPower))

motor_right->setForward(rightPower);

else

motor_right->stop(false);

}

status_sensor_left =static_cast<bool>(msg->leftButtonSwitch.on);

status_sensor_right =static_cast<bool>(msg->rightButtonSwitch.on);

ROS_INFO("Switch sensors Left: [%s] Right: [%s]", status_sensor_left ? "ON" : "OFF", status_sensor_right?

"ON" :"OFF");

}

The constructor attempts to establish the USB connection. If it works, it configures the brick
using the NXT_driver-r2d2mipal’s interface, and creates the objects for the sensors and the
motors (the private attributes). It also sets that the sensors are not active.

The run()methods should not be surprising to those used to writing ROS-subscribers or ROS-
service providers. It gets a ROS-handle and subscribes the corresponding call-backs to the named
topics. Then it spins.

The first callback value_buttonCallback() is the one that handles a request about the
value of the touch sensors. Note that the signature is a bit more complicated as our call-backs are
methods of our class. The code is rather simple, we check if our sensors are active, indicated by
our private variables for this. We then use the NXT_driver-r2d2mipal methods to find the
value of the corresponding sensor and place them in the fields of the response. We answer false
if both sensors were inactive, we want to enforce that programs that use us, invoke values of the
sensors after activating them.

The callback for the control message is robotCallback() and this one is more standard. It
collects the values of motors and acts if they re in the range [-100,100]. It sets the motors forwards
if the value is positive, and in reverse if it is negative, while stopping if the value is zero. At the

11

http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/

end of this method we also extract commands about our sensors, turning off or on according to the
value we receive for this in the message.

12

	The set-up
	An example of a behavior by a simple llfsm using the LEGO-NXT robot and ROS

